Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • 2024-05
  • 2024-06
  • Introduction For achieving sustainable development in Malays

    2018-11-03

    Introduction For achieving sustainable development in Malaysia and transforming the construction industry to be one of the best in the world, the framework of the Malaysian Construction Industry Master Plan fosters the implementation of industrialized building systems (IBS) in building projects (CIDB, 2006). However, several construction and engineering aspects related to the IBS are yet to be fully realized in actual practice. One of these aspects is “design flexibility,” which is one key aspect that governs the efficacy of IBS applications. However, this Q-VD(OMe)-OPh aspect has been largely neglected in both applications as well as literature. As stated by Hamid et al. (2008), a majority of the current IBS applications—both in design and prefabrication—mainly support conventional building forms (e.g., rectangular and square forms). Such monotonous approaches can hinder an architect\'s ability to develop flexible forms. In particular, prefabricated elements are considered to be inflexible to changes that would be normally required over their life spans (Warszawski, 1999; Sarja and Hannus, 1996). Simultaneously, architectural designs aimed toward IBS constructions should possess the attributes of manufacturing feasibility and onsite assembly. From the architectural perspective, flexibility can be defined as the ability of a unit to respond to the changes necessitated by the client, design, and manufacturing requirements (Sarja, 1998). While architectural design ultimately deals with the configurations, connections, shapes, and orientations of the physical forms, flexibility in architectural design is predominantly related to spatial design and building “forms” (Do and Gross, 2001). As such, architects are often inclined to develop varied and unusual architectural forms (Saleh et al., 2003). Therefore, further investigation is required to improve the form flexibility in both architectural design practice and construction. To overcome this barrier, this article presents the results obtained from a research sponsored by the Universiti Putra Malaysia. The issue of achieving form flexibility in IBS constructions during the design stage was investigated based on the premise that “it is extremely important to incorporate system thinking in the architectural design process to foresee and resolve complex issues during the implementation of IBS.” As opposed to concrete and steel constructions, timber construction was investigated in this study since timber is easy to handle and timber elements (used in the experiment) could be easily fabricated. Further, timber comes from a sustainable source; therefore, timber has been fostered by the Construction Industry Development Board (CIDB), Malaysia, as an alternate material for IBS constructions (CIDB, 2003). A series of ethnography methods of investigations have been proposed with regard to the construction of live timber houses. Consequently, the most appropriate approach for achieving an integrated system design has been developed. This article describes an integrated system design model that can be used for improving the form flexibility in IBS designs. The proposed model will help architects in understanding the relationship between building systems and their designs, and therefore, incorporate creativity and flexibility in IBS constructions.
    Research methodology In this article, we have investigated the issue of creating varied architectural “forms” during the iterative architectural design process. This research adopted the approach of an experimental case study to examine the issues involved in the design life cycle of IBS. For investigating the issues pertaining to manufacturing and assembly, a couple of new timber houses were fabricated as the fabrication of timber materials is often easier than that using other building materials. In addition, timber as a construction material has not been sufficiently investigated with regard to IBS constructions as compared to the other widely used elements that can be prefabricated, such as steel and cast-in-situ and precast concrete (Warszawski, 1999). According to a survey conducted by the CIDB, Malaysia, the use of timber in IBS constructions is almost negligible (Majid et al., 2010). Therefore, this research can also provide the construction industry with practical standards that can define the use of timber as an alternate sustainable material in IBS constructions.